

Review Article

Holistic and Conventional Approaches in Alzheimer's Therapy: Exploring Herbal, Synthetic, and Alternative Interventions

Ankit Kumar¹, Mohd. Obaid¹, Shaijee Gautam¹, Amrita Singh¹ *

¹School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur (208024), Uttar Pradesh, India

Article Info

Article history:

Manuscript:

IJPHI13112211232025

Received: 13- NOV -2025

Revised : 22- NOV -2025

Accepted: 23- NOV -2025

Available online: NOV - 2025

Keywords:

Alzheimer, Neurological,

Psychiatrist, Neurofibrillary,

Cholinesterase, Genetic

mutations

*Corresponding Author:

amritasingh@csjmu.ac.in

Abstract

Alzheimer's disease (AD) is a progressive and irreversible neurological condition characterized by a steady and progressive impairment of different domains or sectors of cognition, such as language, learning and memory, attention, and social skills. Kraepelin used the term Alzheimer's disease to describe the condition before it was first described by a German psychiatrist known as Alois Alzheimer in 1906. A study conducted in 2023 shows that 6.7 million of the American citizens aged 65 and over have Alzheimer's disease. It is also possible that by 2060, 13.8 million sufferers of Alzheimer's sufferers will exist unless significant progress is achieved in the field of science to prevent, treat, or cure the disease. Tau and amyloid- β (A β) are the defining molecules of Alzheimer's disease and form neurofibrillary tangles and senile plaques. The main clinical aim of Alzheimer disease is to reduce its development, because there is currently no treatment. Synthetic preparations, which only attenuate symptoms, include cholinesterase inhibitors and NMDA receptor inhibitors (donepezil, rivastigmine, galantamine, and memantine). Unlike synthetic drugs, herbal medicines are more flexible over time and produce fewer side effects, such as inability to sleep, developing withdrawal symptoms, and adversely affecting other vital organs that are common with synthetic drugs. The first objective of this paper was to establish a review of how AD is being treated by searching databases such as PubMed, Web of Science, ResearchGate, Mdpi, Google Scholar, Science Direct, Willey, and many other websites.

@2025 IJPHI All rights reserve

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

1 Introduction : A broad spectrum of neurological conditions known as neurodegenerative disorders (NDDs) are defined by alterations in the structure and operation of the central nervous system (CNS). The most prevalent form of NDD is Alzheimer's disease (AD)¹. First, before German psychiatrist Alois Alzheimer provided the first explanation of the condition in 1906, it was known as "Alzheimer disease by Kraepelin"². An irreversible neurological condition, Alzheimer's disease (AD) is characterized by progressive and growing deficits in multiple areas of cognition, such as language, learning and memory, attention, and social skills.^{3,4} Aphasia, agnosia, memory loss, visuospatial impairment, challenges with computation and critical thinking, and aberrations in personality and behaviour are its clinical characteristics^{5,6}. Hallucinations, amnesia, and confusion are symptoms that may eventually result in infection, aspiration pneumonia, dysphagia, or starvation⁷. The patients' ability to perform daily tasks on their own is severely limited by progressive cognitive deterioration, which ultimately leaves them bedridden and requires round-the-clock care. Many elderly people experience growing social isolation and total dependence on others due to AD and dementia, which affect a rapidly aging population⁸. Some statistics show that, as people age, the prevalence of Alzheimer's disease increases significantly. Approximately 5.0% and 13.1% of persons aged 65 to 74 years and over 75 and 84 years, respectively, were diagnosed with Alzheimer's disease. Remarkably, 33.3% of individuals aged > 85 years suffer from Alzheimer's disease. The fact that Alzheimer's disease can affect anyone, especially those under 65, should not be overlooked^{9,10}. Although those over 65 years of age are more likely to have Alzheimer's disease, children under 30 years of age can still be affected¹¹. In the US, it is the seventh leading cause of mortality and accounts for almost 80% of all dementia cases.¹² The 2023 study estimates that around 6.7 million Americans aged 65 and older suffer from Alzheimer's disease. By 2060, there could be 13.8 million Alzheimer's patients if no major advancements in medicine were made to prevent, stop, or cure the condition. Official death certificate statistics show that between 2000 and 2019, the mortality rate from Alzheimer's disease increased by approximately 145%.⁹ Additionally, AD has created a significant issue; the World Health Organization estimates that the expense of providing additional care for patients with AD has skyrocketed to \$600 billion annually due to the progressive decline in everyday activities and independent living¹³. Depending on when it first manifests, AD is classified into two types: early onset or familial AD (EOAD), which accounts for 1%–5% of AD cases, and late-onset AD (LOAD) or sporadic AD, which accounts for over 95% of AD cases.¹⁴ Mutations in three autosomal dominant genes, presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid- β precursor protein (APP), are usually the cause of EOAD. $\text{A}\beta$ generation and APP processing are mediated by PSEN1 and PSEN2, respectively, whereas the amyloid beta ($\text{A}\beta$) sequence is encoded by the APP gene¹⁵. The hallmarks of Alzheimer's disease include tau and amyloid- β ($\text{A}\beta$) peptides that form neurofibrillary tangles (NFTs) and senile plaques^{16,17}.

Affected people experience behavioral, cognitive, and functional impairments as a result of these protein aggregators, which also alter synaptic function and neurotransmitter levels and trigger oxidative and inflammatory responses that lead to cell death¹⁸. A recent study identified distinct pathways, such as mitochondrial failure, defective autophagy, and dysregulation of the gut-brain axis, caused by abnormalities in intestinal microbes that contribute to the course of Alzheimer's disease. The pathophysiology is complicated by genetic variations such as APOE4 and TREM2, which affect disease development and susceptibility¹⁹. Alternative therapeutic techniques are urgently needed because current pharmaceutical treatments remain unsuccessful and concentrate on symptoms rather than the course of the disease¹³. The main clinical objective of Alzheimer's disease is to slow its progression because there is currently no cure for it²⁰. Among the synthetic formulations that only reduce symptoms are cholinesterase inhibitors and NMDA receptor inhibitors (donepezil, rivastigmine, galantamine, and memantine).^{21–23} $\text{A}\beta$ -targeting antibodies, such as lecanemab and aducanumab, have recently received FDA approval^{24–26}. Unlike synthetic drugs, herbal remedies are more flexible over time and have fewer adverse effects, including trouble sleeping, withdrawal syndromes, and negative effects on other vital organs, which are common issues with synthetic alternatives^{27,28}. This review aims to present a comprehensive comparison between holistic approaches to managing Alzheimer's disease and contemporary medical therapy. To find the areas where medications can have the greatest effect, it first looks into how the disease affects the brain. Subsequently, the topic turns to conventional therapies, including synthetic drugs that have FDA approval, and examines their mechanisms of action, effectiveness, and drawbacks. The expanding interest in plant-based compounds and herbal treatments is also covered in this paper, with references to both contemporary scientific research and conventional wisdom. It also explores complementary therapies, such as music therapy and nutrition therapy, to prevent cognitive decline and support brain health. The evaluation encourages a more comprehensive and targeted plan by integrating the best features of both the strategies.

2. Pathophysiology of Alzheimer disease-

While the exact pathogenetic mechanisms underlying Alzheimer's disease remain unknown, it is widely believed that the main causes of the disease are excessive accumulation of insoluble amyloid β protein ($\text{A}\beta$), which forms senile plaques on blood vessel walls and in the extracellular space, and neurofibrillary tangles, which are aggregates of hyperphosphorylated tau protein^{29–32}. Under a microscope, frequent lesions were shown to be senile plaques composed of aggregated amyloid- β 42 ($\text{A}\beta$ 42) peptides and intracellular NFTs generated by hyperphosphorylated tau proteins in the neurons³³. Based on these pathological indicators, Alzheimer's disease can be diagnosed accurately. In the brain, phosphorylated tau and β -amyloid accumulation damage synaptic function and

eventually cause neuronal cell death³⁴. The first stage of A β formation involves altered APP cleavage. The transmembrane protein, APP, has an extracellular domain. It is broken down by both amyloidogenic and nonamyloidogenic processes³⁵. The large soluble ectodomain APP α and the C-terminal fragment α are produced when α (APPs-secretase, ADAM10, and ADAM17) cleaves APP at residues 16–17 of the A β sequence during the non-amyloidogenic process.³⁶ When sick, APP is broken down by β -secretase (BACE1) to create CTF β and soluble APP β (α APP β). γ -Secretase breaks down CTF β , leaving behind AICD and insoluble A β . Upon polymerization stimulation of kinases, the microtubule-binding tau protein is hyperphosphorylated and insoluble NFTs are formed.^{35–37} Along with tubulin construction and linking bridges between microtubules,

hyperphosphorylation of the microtubule-associated tau protein is another important characteristic of Alzheimer's disease³⁸. The generation of kinases and hyperphosphorylation of tau results in the formation of amyloid plaques and NFTs³⁹. These NFTs are linked to the loss of signal processing and inter-neuronal communication, resulting in neuronal death. Oxidative stress is one of the main causes of NFT in Alzheimer's disease⁴⁰. ROS and reactive nitrogen species imbalances are the primary causes of oxidative stress. A β deposition and excessive oxygen free radicals may trigger inflammation and activate microglia, which in turn may result in ROS production^{41,42}. When these pathways are combined, they create a toxic stress environment that results in permanent neuronal death. Each of these mechanisms is essential to the onset and course of the disease.⁴³

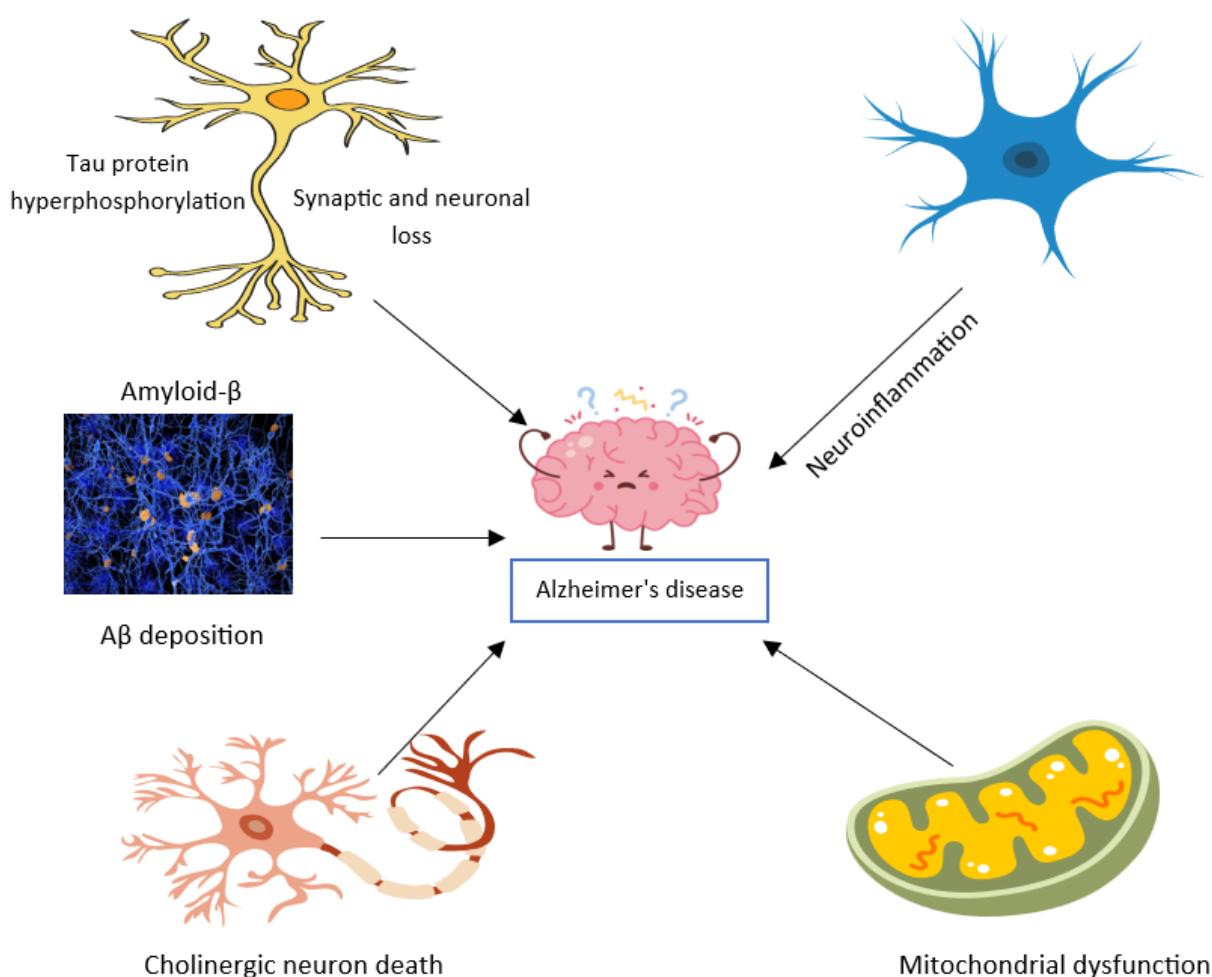
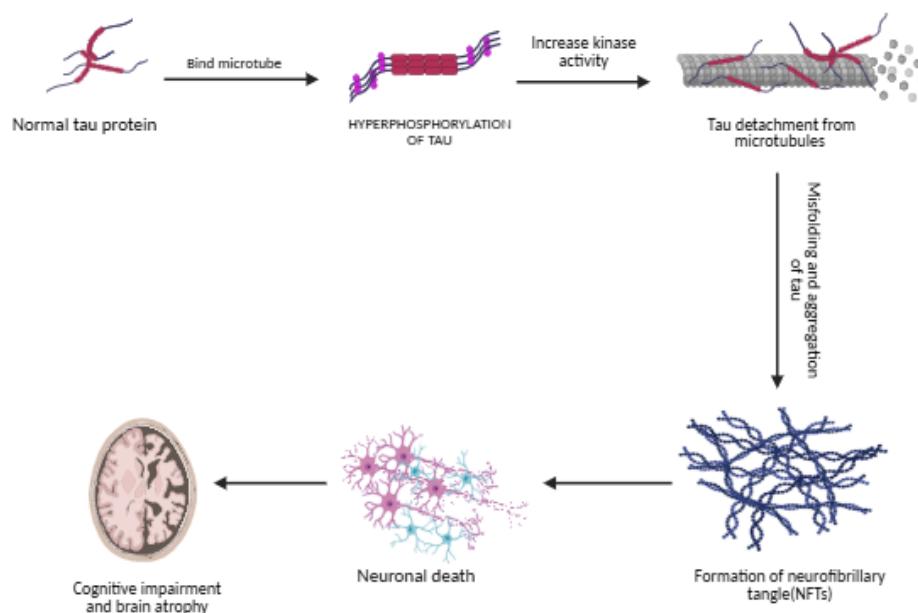


Fig. (1) pathophysiology of Alzheimer disease

2.1 Amyloid- β hypothesis-

Years (or even decades) before Alzheimer's disease symptoms manifest, A β deposition starts [44]. Alzheimer's causes A β to accumulate and form plaques by interfering with the normal A β clearance route.⁴⁴ Amyloid proteins Amyloid beta (A β) is naturally produced by amyloid


precursor protein (APP) and contains 36–43 amino acids.⁴⁵ Pathological production of APP occurs through the production of A β by β -secretase and γ -secretase. Under physiological conditions, APP is cleaved by α -secretase and not by β -secretase to produce soluble APP α fragments via a non-amyloid secretory route⁴⁶. Elevated formation of A β plaques occurs when mutations alter the cutting pattern of

APP, presenilin 1, presenilin 2, or APOE 4 genes^{47,48}. This leads to the release of longer A β peptides, which are prone to aggregation too early. Hydrophobic and poisonous A β 42 species have a higher likelihood of aggregation than A β 40 monomers⁴⁹. The acuity of cognitive impairment in patients with AD is related to the number of soluble oligomers in the brain, with the notable exception that the responses to soluble oligomers depend on the various alpha-entities that form them, especially A β 40⁵⁰. The soluble oligomers facilitate the proliferation of oxygen free radicals and are neurologically toxic. They are both significant and mostly dependent on the deregulation of the nerve cell activity of calcium homeostasis, which leads to their death⁵¹. Controversially, A β remains uncertain, but there are a few reports that, under physiological concentrations, A β might contribute to the regulation of synaptic plasticity⁵². A discrepancy between A β generation and clearance could cause aggregation, which could lead to AD. This is termed the amyloid cascade hypothesis, which may incorporate the genetic types of AD⁵³.

2.2 Neurofibrillary tangles hypothesis-

Neurofibrillary tangles (NFTs) are another important histological feature of AD brains.⁵⁴ In addition to NFTs,

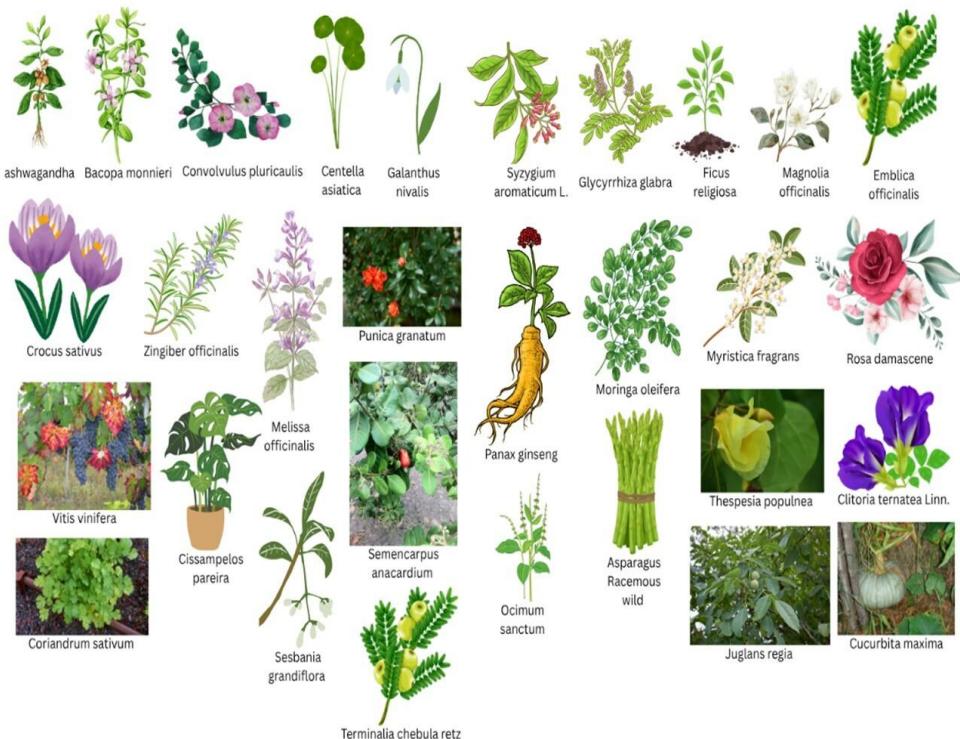
neuropil threads (NT) are produced when the dendrites and axons of tangle-bearing neurons deteriorate.⁵⁵ The microtubule-associated protein tau is organized into paired helical filaments, which make up the NFT⁵⁶. A highly soluble cytoplasmic protein, tau, binds to tubulin during polymerization onto microtubules, promoting assembly and stability and enhancing axonal transport⁵⁷. Under pathogenic circumstances, tau is excessively phosphorylated, especially by dysregulated kinases, such as GSK-3 β and CDK5.⁵⁸ As a result of hyperphosphorylation, the binding affinity of Tau for MTs decreases, causing the neuronal cytoskeleton to become unstable and eventually collapse⁵⁹. Tau, which is hyperphosphorylated, quickly separates from microtubules and forms NFTs.⁶⁰ NFTs and microtubule dissociation result in oxidative stress, neuroinflammation, cytoskeletal and mitochondrial dysfunction, axonal transport deficits, and synaptic loss. Figure (2)^{61,62} Because tau dysregulation is a critical component of neurodegeneration, attempts are being made to halt disease progression by developing therapeutic methods that target tau stabilization, kinase inhibition, or post-translational changes⁶³. Understanding these pathways is required for the development of targeted therapies for tau-associated neurodegenerative disorders⁶⁴.

Created in BioRender.com

Fig. (2) Shows the Neurofibrillary tangles (NFTs) hypothesis

2.3 Mitochondria dysfunction and oxidative hypothesis-

This is one of the long-standing hypotheses concerning the pathogenesis of early AD, namely the role of mitochondrial dysfunction and oxidative stress.⁶⁵ Mitochondria are especially susceptible because they are the main energy producers in the brain, and their impairment caused by the development of AD results in the failure of bioenergetics and the induction of oxidative stress⁶⁶. It is one of the clear and early signs of AD, even in the absence of A β plaques and tau tangles. Multiple mitochondrial processes are known to be disturbed in AD,⁶⁷ and in the brains of AD patients, the addition of full-length APP and truncated proteins may be deposited within the protein import channels of the mitochondrial APP, blocking protein import of the mitochondrial machinery and causing mitochondrial dysfunction⁶⁸. Mitochondrial defects exhibited in AD include poor dynamics (fission/fusion), motility, and calcium buffering capacity, which cause overproduction of reactive oxygen species (ROS)⁶⁹. Oxidative stress is an age-related disease, such as AD. Oxidative stress precedes the conditions in AD and is thought to be a major cause of NFT formation in AD^{70,71}. Oxidative stress contributes significantly to different neurodegenerative diseases, such as AD. Oxidative stress primarily occurs because of the inconsistency of reactive nitrogen species (ROS/RNS) such as H₂O₂, OH, O₂ radicals, nitrogen dioxide radical (NO₂), etc. [^{71,72}. These results suggest that mitochondrial-directed therapies have favorable potential, where ATP synthesis improvement, inhibition of ROS, and membrane potential stabilization are the subjects of current strategies.⁷³


3. THERAPEUTIC STRATEGIES.

Unfortunately, the treatment of AD is ineffective, and the primary clinical concern is to reduce the development of the disease. To date, AD or other symptom-alleviating drugs that are available and approved by the Food and Drug Administration for treatment include galantamine, donepezil, tacrine, rivastigmine, and memantine.¹³ The existing classes of drugs currently used to treat AD are cholinesterase inhibitors donepezil and galantamine, the antibiotic rifampicin, the NMDARs antagonist memantine, and combinations of memantine and donepezil. Investigational treatments are aimed at A β pathology, tau pathology, and cholinesterase inhibitor use. These are γ -secretase inhibitors, β -secretase inhibitors, α -secretase modulators, aggregation inhibitors, metal-disrupting drugs, drugs that improve A β clearance, inhibitors of tau hyperphosphorylation, inhibitors of tau aggregation, and drugs that promote tau clearance.^{74,75} Currently, a global pattern of common cerebral disorders such as those entrenched in AD can be observed in some regions of the globe, and⁷⁶⁻⁷⁸ the study of natural products as possible remedies is difficult because of their abundant chemical composition, extensive use in traditional medicine, and the ability of such proven sources to target numerous

pathological processes characteristic of AD. Natural products also present a highly complex mode of action (e.g., antioxidant, anti-inflammatory, neuroprotective properties), which fits well with the complexities of AD causation that includes amyloid plaque formation, tau tangles, neuroinflammation, or oxidative stress⁷⁹⁻⁸¹. More so, relative to conventional drugs that may induce undesirable adverse effects such as gastric upset or neuropsychiatric disorders, natural products are typically safer and have reduced adverse effects⁸². The future of AD diagnosis and management lies in new biological treatment techniques such as gene therapy, immunotherapy, stem cell therapy, microRNA therapy, multi-omics, and probiotic therapy. These methods are slowly becoming the most promising new treatment in the future.⁸³

3.1 Plant based therapy-

Neurodegenerative diseases such as Alzheimer's disease may have therapeutic value that is enhanced through natural products that exhibit anti-inflammatory, antioxidative, neuroprotective, and neuroreparative qualities. Figure (3) These features may be specifically aimed at the hyperphosphorylation of tau protein, oxidative stress, accumulation of amyloid-beta, and neuroinflammation, which can all contribute to the etiology of Alzheimer's disease^{7,84}. With more information on AD processes, there is an increasing need to find bioactive compounds of natural origin that may supplement or complement the existing treatment modalities^{7,84,85}. Since the number of potential natural chemicals is too large, research on these molecules promises the possibility of new, cheap, and effective treatments of the Alzheimer disease⁸⁶. The most common herbal and plant therapies are chemical agents that exhibit diverse beneficial pharmacological and biochemical activities^{87,88} (Figure 4). Phytochemicals have been proven as based on scientific facts and shown as effective in the prevention and treatment of Alzheimer as well as affordable and safe. Several plants (their family, dose administration, its effect, animal models, and phytoconstituents) are shown in Table (1)

Fig. (3) Plants that exhibit anti-inflammatory, antioxidative, neuroprotective qualities which help in the treatment of AD

TABLE- 1 Herbs that are used in the Treatment of Ad

S. N	Plant name /common name	Family	Part used	Extraction/ fraction	Active constituents	Drug Administration	Induction model	Treatment duration	Produced effects	Citation
1	Withania somnifera (ashwagandha)	Solanaceae	Root	Aqueous extract	Withanone Withaferin Withanolides Withanolides C	Oral administration (100/200 mg/kg)	3-NP-induced HD	14 days	Anti – inflammatory properties Anti – oxidant effects Rejuvenating effects Improved long-term memory and learning ability ↓AChE activity ↑Ach receptor expression ↑cholinergic markers like Ach and ChAT	74,89
2	Curcuma longa (Turmeric)	Zingiberaceae	Rhizome	Hydrophobic extract	Curcumin and polyphenol	Oral administration (10,20 and 50 mg/kg)	SDAT induction	21days	Anti – inflammatory Anti-oxidants	90,91
3	Bacopa monnieri (Brahmi)	Scrophulariaceae	Aerial part	Alcoholic extract	Bacopasaponin A, B, C, D pseudojujubogenin, brohmone, herpestine, monnierin	Oral administration (20,40 and 80 mg/kg)	Ethylcholine aziridium ion (AF64A)	2 weeks	Anti- inflammatory inhibitors properties Anti – oxidants	92

									A β -aggregation inhibitors properties	
4	<i>Convolvulus pluricaulis</i> (Shankhpushpi)	Convolvulaceae	Root	Aqueous, extract	Steroids, anthocyanin's, flavanol, glycosides and triterpenoids	Oral administration (100,150 and 250 mg/kg)	Scopolamine-induced cognitive impairments in wistar rats	7 days	Memory enhancing properties ↓Glutathione reductases, ↓AChE Anti-oxidants Neuroprotective effects	⁹³
5	<i>Centella asiatica</i> (Mandoonkaparni)	Apiaceae	Whole plant	Aqueous extract	Flavonoids, terpenoids, essential oil, alkaloids, carbohydrate, amino acid	Oral administration (200,500,700 and 1000 mg/kg body weight)	-	15 days	↑ intelligence and improve cognitive function ↑ working memory and improve self-mood AChE inhibitor	⁹⁴
6	<i>Celastrus paniculants</i> (Jyotishmati)	Celastraceae	Seed	Aqueous extract	Alkaloids, sesquiterpenes, paniculatine B, triterpenoids, sterol	Oral administration (500 and 1500 mg/kg)	Sodium- nitrite induced amnesia rodent model	15 days	Improve memory performance ↓Anticholinesterase enzyme ↑ Ach level	⁹⁵
7	<i>Nardostachys jatamansi</i> (Jatamansi)	Valerianaceae	Rhizome	Methanolic extract	Carbohydrate, alkaloids, glycosides, saponins, proteins, amino acid	Oral administration (200 and 400 mg/kg)	Sleep –Deprived amnesic model	14 days	Anti-oxidants ↓Acetyl cholinesterase activity enhance memory by increasing cholinergic level	⁹⁶

8	Galanthus nivalis (Common snowdrop)	Amaryllidaceae	Bulbs	-	Galantamines, nivalidine, narwedine, and lycorine	Oral administration 10,30 or 50 mg/kg	Scopolamine induced model	-	Antioxidants and anti-amyloid activities	⁹⁷
9	Syzygium aromaticum L. (Clove)	Myrtaceae	Flower	Ethanolic extract	eugenol (70–85%), eugenyl acetate (15%) and β -caryophyllene (5–12%).	I.V administration (2 and 10 μ g/ml)	$\text{A}\beta_{25-35}$ induced neurotoxic cells	-	Acts as a scavenger of superoxide radicals Elevate the antioxidants enzyme (SOD, Cat, GSH)	⁹⁸
10	Glycyrrhiza glabra (Mulethi)	Leguminosae	Roots	Acetone	Glabridin	Oral administration (1,2 and 4 mg/kg P.O)	Scopolamine – induced impairment	3 days	Neuroprotective agents Anti-inflammatory properties Anti – oxidants ↑Ach level in brain AChE inhibitor	⁹⁹
11	Ficus religiosa (peepal)	Moraceae	Leaves bark	Methanolic extract	Compesterol, stigmasterol, 28-isofucosterol, α -amyrin, β -amyrin, lupeol, tyrosine, asparagines, alanine, threonine	(10,50 and 100 mg/kg I.P)	Scopolamine-induced anterograde and retrograde amnesia in mice	2 days	possesses anti-amnesia effect via modulating brain serotonin levels ↑Ach level memory enhancing effect	¹⁰⁰
12	Magnolia officinalis (houpu magnolia)	Magnoliaceae	Stem	Ethanol extract	Honokiol, obovatal, magnolol, 4-o-methyl honokiol	Oral administration (10mg/kg)	Transgenic mouse model	3 months	inhibit memory impairment and $\text{a}\beta$ deposition in the brain tg2576 mice ↓BACE activity	¹⁰¹

								anti-stress activity	
13	<i>Lepidium meyenii</i> (Maca)	Brassicaceae	Root	Aqueous and hydroalcoholic extract Pentane extract	Macaridine, lepidin A, lepidin B, tetrahydro- β -carbolines, glucotropaeolin, glucoalyssin, benzylisothiocyanate, brassicasterol, macamide, macaenes	I.V administration (aqueous-0.50 and 2.00g/kg) (hydroalcoholic-0.25 and 1.00 g/kg) (pentane-3,10 mg/kg)	Scopolamine induced memory impairment in mice	35 days	Acts as a neuroprotectant Improve memory deficits inhibitor effect on AChE activity
14	<i>Emblica officinalis</i> (Amla)	Phyllanthaceae	Fruit	Hydroalcoholic extract	Phenolic compounds, tannoids, tannins, vitamin C, flavonoids, phyllembelic acid, gallic acid, ellagic	Intraperitoneal administration (150,300,450 and 600 mg/kg)	Scopolamine induced amnesia in mice	7 days	Anti-inflammatory agents Memory enhancing properties Ache inhibitors Anti-oxidants
15	<i>Tinospora cordifolia</i> (Giloy)	Menispermaceae	Leaf	Alcoholic extract	alkaloids, glycosides, lactones, steroids, polysaccharides and aliphatic compounds	Oral administration (140 and 280 mg/kg)	Alprazolam induced amnesia in albino mice	-	Cholinesterase inhibitors Anti-inflammatory effects \downarrow AChE properties
16	<i>Crocus sativus</i> (kesar)	Iridaceae	Stigma	Aqueous extract	Carotenoids, crocins, safranal, picrocrocin, quercetin, kaempferol	I.P administration (15 and 30 mg/kg)	Streptozotocin – induced cognitive deficits in rats	3 weeks	Anti –oxidants Anti- inflammatory Acetylcholinesterase inhibitors A β -aggregation inhibitors

17	Zingiber officinalis (Adhrak)	Zingiberaceae	Rhizome	Ethanol extract	Essential oil, 6-shogaol, 6-gingerol, 8-shogaol and methoxy-[6]-gingerol	Oral administration (50 and 100 mg/kg, p.o.)	Beta -amyloid induced model in mice	8 days	Nootropic effect rejuvenator ↑acetyl cholinesterase inhibitory activity antioxidant	¹⁰⁶
18	Panax ginseng (Ginseng)	Araliaceae	Whole part	-	Ginsenosides	Oral administration (100 and 200 mg/kg/d)	Aged senescence-accelerated mouse prone 8 (SAMP8) mice	12 weeks	Neuroprotective effects Improve cognitive and memory performance	¹⁰⁷
19	Punica granatum (Anar)	Lythraceae	Peel, seed	Water/ ethanol	Punicalin, Punicalagin, quercetin, rutin, catechin, flavan-3-ol	Oral administration (500 mg/kg)	Scopolamine induced cognitive deficit in rats	5 days	A β -aggregation inhibitors Cognitive and memory improvement properties	¹⁰⁸
20	Evolvulus alsinoides (Vishnukranti)	Convolvulaceae	Aerial part	Ethanol extract	Betaine, evolvine stearic acid, oleic acid, linoleic acid	Oral administration (100 and 200 mg/kg)	Scopolamine induced amnesia in rats	30 days	Improve the acquisition and retention of memory Nootropic effect Adaptogenic	¹⁰⁹
21	Melissa officinalis (lemon Balm)	Lamiaceae	Leaves	Hydro-alcoholic extract	Phenolic compound (rosmarinic acid, caffeic acid, metrilllic acid) Flavonoids (Luteolin, apigenin) β -caryophyllene, germacrene, oleanolic acid, uroslic acid	Oral administration (50,100,200,400 mg/kg P.O)	Amyloid β -rat model	30 days	Modulate mood &memory performance ↓STL (step-through latency) Acetylcholinesterase inhibitor Improve cognitive impairment Antioxidant	¹¹⁰

								Nicotinic receptor stimulation	
22	<i>Salvia officinalis</i> (common sage)	Lamiaceae	leaf	Aqueous extract	7 α -methoxyrosmanol, diterpenes, rosmarinic acid, carnosic acid, quercetin and isorosmanol	Interperitoneally administration (300 mg/kg)	-	7 days	Shows antioxidants properties Have cognitive-enhancing properties Helps in preventing age-related problems ¹¹¹
23	<i>Ficus racemosa</i> (Goolar Fig)	Racemosa	Bark	Aqueous extract	B-sitosterol, stigmasterol, luponol, lupeol, gluanol acetate, racemosic acid, kaempferol, bergenin, behenate	Oral administration (250-500 mg/kg)	Exteroceptive behavioral model	4 weeks	Enhanced Ach level in hippocampi Reduction in TL (transfer Latency) Acetylcholinesterase inhibitor memory enhancing activity antioxidant property ¹¹²
24	<i>Moringa oleifera</i> (Drumstick tree)	Moringaceae	Leaves	50% hydroalcoholic	β -carotene, tannins, phenolic, saponins vitamin C	Oral administration (100,200 and 300 mg/kg)	Age-related dementia	7 days	Improve spatial memory ↓ MDA level ↑ SOD, CAT and AChE activity ¹¹³
25	<i>Prunus Amygdalus</i> (Badaam)	Rosaceae	Seed	Ethanol extract	Flavonoids, phenolics and anthocyanins	Oral administration (250 and 500 mg/kg)	Scopolamine induced- amnesia	21 days	↑The level of lipid peroxidation antioxidant action ¹¹⁴

26	<i>Myristica fragrans</i> (Nutmeg)	Myristicaceae	Seed	n-hexane extract	Myristicin and myristic acid, eugenol pinene, elemicin, isoelemicin	Oral administration (5,10 and 20 mg/kg P.O)	1.Scopolamine induced amnesia 2.aging-induced amnesia	3 days	Antioxidants Enhanced learning and retention property Acetylcholinesterase inhibitor	¹¹⁵
27	<i>Rosa damascene</i> (Gulab)	Rosaceae	Flower	Methanolic extract	Flavonoids (quercetin, kaempferol, myricetin, gallic acid) Glycoside derivatives	I.P administration (300,600 and 1200 mg/kg)	Amyloid- β -induced rat model	21 days	Anti -oxidants Nootropic effects Anti-inflammatory	¹¹⁶
28	<i>Vitis vinifera</i> (Angoor)	Vitaceae	Fruit	Hydro-alcoholic extract	Gallic acid, catechin epicatechin, flavone, flavanols quercetin catechin	Oral administration (400mg/kg P.O)	Aluminum-induced oxidative stress in rat brain	45 days	Antioxidant Anti-amyloidogenic Memory enhancer Neuroprotectant	¹¹⁷
29	<i>Lavandula angustifolia</i> (Lavender)	Lamiaceae	Leaves Flower	Aqueous extract	Linalool, Linalyl acetate, Flavonoids	Interperitoneally administration (50,100 and 200 mg/kg)	$\text{A}\beta$ -induced rat model	20 days	Anti -oxidants Ability to clear $\text{A}\beta$ plaques from AD hippocampus Memory and cognitive enhancer	^{118,119}
30	<i>Murraya koenigii</i> (Meethi neem)	Rutaceae	Leaves	Ethanolic extract	Phenolic compound, vitamins Carbazole alkaloids, Terpenoids	Oral administration (300-500 mg/kg)	Scopolamine induced aged mice	15 days	Nootropic effect Anticholinesterase property	¹²⁰
31	<i>Ficus carica</i>	Moraceae	Fruit	Ethanolic extract	Flavonoids, glycosides, tannins, maslinic acid, protocatechuic, bergapten, urosolic acid	Oral administration (100 and 200 mg/kg P.O)	Scopolamine induced impairment animal model	27 days	Anti – inflammatory effects Neuroprotective effective Anti-amyloid activity	¹²¹

									Cognitive enhancer	
32	<i>Coriandrum sativum</i> (Coriander)	Apiaceae	Leaves	-	Volatile oil, proteins, flavonoid (Quercetin, isoquercetin), caffeneic acid, carotene and carbohydrate	Oral administration (5,10 and 15 % w/w)	Diazepam, scopolamine induced amnesia in mice	45 days	↓ oxidative stress in rat hippocampus which improve memory impairment Neuroprotective effects ↓AChE activity	¹²²
33	<i>Cissampelos pareira</i>	Menispermaceae	Root	Hydroalcoholic extract	Alkaloids (Pelosine, bebeanine, hyatine, hyatinine, cissampareine, curine)	Oral administration (100,200 and 400 mg/kg P.O.)	Exteroceptive behavioral models	7 days	Significant improve memory and learning properties Anti – inflammatory Anti – oxidants	¹²³
34	<i>Rhodiola rosea</i>	Crassulaceae	Root and leaf	Aqueous extract	Phenols, flavonoids, alkaloids	I.V administration (400 mg/kg)	3xTg-AD mice	3 months	neuroprotective, antiapoptotic	¹²⁴
35	<i>Clitoria ternatea</i> Linn. (Shankpushpi)	Fabaceae	Leaf	Ethanol extract	Tannins, glycosides, flavonoids	Oral administration (150 and 300 mg/kg)	Stress – induced amnesia in rat	-	↑Acetylcholinesterase activity and Ach content in rat brain improve memory activity Neuroprotective, antioxidant, anticholinergic activity	^{125,126}
			Root and aerial part	Alcoholic extract		Oral administration (300 and 500 mg/kg)	Electroshock – induced amnesia in rat	7 days		
36	<i>Sesbania grandiflora</i>	Fabaceae	Seed, fruit	Ethanol extract	Steroids, saponin, flavonoids, tannins,	Oral administration (200 and 400 mg/kg P.O)	Celecoxib induced amnesia	14 days	↓ AChE and MDA activity	¹²⁷

					and phenolic compounds				improve memory improve cognitive dysfunction Neuroprotective, Antioxidant, antidementia activity	
37	<i>Areca catechu</i> Linn. (Areca nut)	Palmae	-	Methanolic extract	Polysaccharides, polyphenols (flavonoids, tannins), fibers, proteins, alkaloids (Arecoline, arecoline, guvacine, guvacoline, isoguvacoline, arecoline)	Oral administration (500 m/kg)	-	21 days	Anticholinesterase activity ↓BChE activity Anti-amnesic activity	¹²⁸
38	<i>Acorus calamus</i> . L	Acoraceae	Rhizome	Ethyl acetate, ethanolic and aqueous extract	Quinone, flavonoids, phenols	Oral administration (200, 400, and 600 mg/kg)	Lipopolysaccharide-induced neuroinflammation in rat	NA	Possesses memory enhancing property ↓AChE properties	¹²⁹
39	<i>Thespesia populnea</i>	Malvaceae	Bark	Ethanol extract	Thespone, mansonone-D, mansonone-H, thespone	Oral administration (100, 200 and 400 mg/kg)	Exteroceptive behavioral models	7 days	memory improving property cholesterol lowering property anticholinesterase anti-inflammatory activity	¹³⁰

40	<i>Semecarpus anacardium</i>	Anacardiaceae	Seed	Milk extract	Alkaloids, unsaturated lipid, terpenoids, steroids, flavonoids, glycosides	Oral administration (100 mg/kg BW)	NH ₄ Cl- induced hyperammonemia rats	8 days	Nootropic effect Memory enhancing properties ↓AChE anti-inflammatory property	¹³¹
41	Asparagus Racemosus wild (Satmuli)	Asparagaceae	Root	Methanolic extract	Steroidal saponins, isoflavones, asparagine, essential oil, flavonoids, resin, tannin, arginine, tyrosine	Oral administration (100 mg/kg)	Scopolamine induced amnesia mouse model	One week	↓Monoamine oxidase A Neuroprotective effects Anti-oxidants	¹³²
42	<i>Sida cordifolia L.</i>	Malvaceae	-	Aqueous and hydro-ethanolic extract	Ephedrine, pseudoephedrine, quinazolines, cryptoleptins, fumaric acid, sterulic flavonoids, saponins, n-methyl tryptophan	Oral administration (50,100 and 250 mg/kg)	Reserpine induced model	7 days	Neuroprotective effects Anti-oxidants Anti-amnesic properties AChE inhibitors	¹³³
43	<i>Ocimum sanctum</i> (Tulsi)	Labiatae	Hole plants	Hydroalcoholic extract	Alkaloids, glycosides, saponins, tannins, vitamin C, maleic acid, citric acid, tartaric acid	Oral administration (300 and 500 mg/kg P.O)	H ₂ O ₂ induced neuronal cell		Antioxidant activity ↓lactate dehydrogenase leakage ↓lipid peroxidation DNA damage ↓ROS generation	¹³⁴

44	<i>Cucurbita maxima</i> (Pumpkin)	Cucurbitaceae	seeds	NA	Ferulic acids, caffeic acid, and coumaric acid	Oral administration (100 and 200 mg/kg)	Scopolamine induced- amnesia	5 days	Antioxidants properties and helps in relieving stress Anti-amnesic effect ↓TNF expression in hippocampus ↓Acetylcholinesterase ↑Glutathione levels	¹³⁵
45	<i>Juglans regia</i> (Walnut)	Juglandaceae	kernel	Ethyl acetate extract	α-tocopherol, ellagic acid, and juglone	Oral administration (2 or 4 µg)	Amyloid-beta peptide-induced cell	-	↓Oxidative stress Shows anti-amyloidogenic activity	¹³⁶
46	<i>Terminalia chebula retz</i>	Combretaceae	Fruit	ethanolic extract	7- methyl gallic acid chebulic acid, terchebin, gallic acid, punicalagin	I.V administration (20-100 µg/ml)	Aβ induced toxicity	-	Memory enhancer Anti-inflammatory Anti-aging Anti -oxidants ↓AChE and BChE	¹³⁷
47	<i>Enclipta prostrata</i> L.	Asteraceae	-	Ethanol extract	Alkaloids, glycosides, coumarins, flavonoids, sterols	Oral administration (25,50,100 and 200 mg/kg P.O)	Scopolamine induced in mice	One week	↑level of superoxide dismutase ↓Glutathione-S-transferase ↓MDA in brain Nootropic effect	¹³⁸

									Enhance memory and learning activity	
48	Cuminum cyminum Linn. (Cumin)	Apiaceae	seeds	Aqueous extract	Monoterpenes β-pinene, P-cymene, Cinnamaldehyde and menthadien carboxaldehydes	Oral administration (100,200 and 300 mg/kg/day)	Scopolamine – induced amnesia	-	Acts as a scavenger of free radicals Protects the CNS against any injury Act as a memory impairment Anxiolytic effect Neuroprotective effects	¹³⁹
49	Pistacia vera L. (pistachio)	Anacardiac eae	Seeds	Hydroalcoholic extract	Vitamin E family, carotenoids, phenolics, flavonoids	Oral administration (10,50, or 100 mg/kg)	-	14 days	Possesses antioxidant and anti-amyloid activities Improve learning and memory	¹⁴⁰
50	Uncaria rhynchophylla (Gouteng)	Rubiaceae	Stem	Aqueous extract	Rhynchophylline, isorhynchophylline, and hirsuteine	Oral administration (10,20 and 30 mg/kg)	Scopolamine induced model	-	Free radical scavenging activity Protection against kainic acid- induced neuronal damage	¹⁴¹

51	Cicer arietinum L. (Chickpea)	Fabaceae	Entire plant	-	Carbohydrates, proteins, amino acids, fixed oil, alkaloids, phenolic compounds	Oral administration (10 mg/kg)	AlCl ₃ - induced model	6 weeks	Neuroprotective effects	¹⁴²
52	Ptychopetalum olacoides (Marapuama)	Oleaceae	Roots	Ethanol extract	Ptychonal, muirapuamine, and theobromine	I.P. administration (50,100 and 800 mg/kg)	Memory deficits aging mice	2.5 months	Possesses antianemic, anticholinesterase, and neuroprotective properties	¹⁴³
53	Scutellaria baicalensis Georgi) (skullcap)	Labiateae	Root	70% ethanol extract	Flavonoids, wagonin, baicalin, oroxylin A	Oral administration (10,30 and 100 mg/kg)	Ibotenic acid induced model rats	1 week	Promotes the recovery of memory loss	¹⁴⁴
54	Thymus vulgaris (Thyme)	Lamiaceae	-	Hydro – alcoholic extract	Thymol, carvacrol, 8-terpinene, p-cymene and α -pinene	Oral administration (50 and 100 mg/kg/BW)	Scopolamine-induced amnesic rat	15 days	\downarrow subcortex MDA level Increase Ach level in brain	¹⁴⁵

55	<i>Olea europaea</i> (Olive)	Oleaceae	Fruit, oil, leaves	Methanol-ethanol extract	Oleuropein, tyrosol, hydroxytyrosol, caffeic acid, verbascoside, and rutin	Oral administration (360,600 or 1000 mg/kg W/W)	-	3 months	Possesses antioxidant, anti-inflammatory, and antiamyloid properties	¹⁴⁶
56	<i>Allium sativum</i> (Garlic)	Amaryllidaceae	Bulb	Ethanol extract	2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)	Oral administration (5,10 and 20 mg/kg)	A β - induced model	3 weeks	Neuroprotective Anti-inflammatory activities ↓intracellular reactive oxygen species (ROS)	¹⁴⁷
57	<i>Mentha piperita</i> L. (Peppermint)	Lamiaceae	Leaves and aerial part	n-hexane	menthol, menthone, neomenthol, methyl acetate, isomenthone, 1,8-cineole, linalool, α -pinene, β -pinene, limonene, carvone, and pulegone	Oral administration (50 and 100 mg/kg)	Scopolamine-induced amnesia	19 days	Nootropic effects Anti-amnesic effects	¹⁴⁸
58	<i>Coptis chinensis</i> Franch.	Ranunculaceae	Entire plant	-	Berberine	Oral administration (25 or 100 mg/kg/day)	Transgenic AD mice	4 months	Anti-oxidants Neuroprotective effects Memory enhancer AChE inhibitors	¹⁴⁹

59	<i>Foeniculum vulgare</i> (Fennel)	Apiaceae	seeds	Methanolic extract	Estragole, limonene, fenchone, and β -myrcene	Oral administration (200 mg/kg P.O)	Scopolamine – induced amnesia modeling mice	8 days	↓effect against AChE and BChE ↑ROS production ↑Lipid peroxidation Neuroprotective effects	150
60	<i>Spinacia oleracea</i> (spinach)	Amaranthaceae	Leaves	-	Ferulic acid, coumaric acid, quercetin, spinacetin, and myricetin	Oral administration (400 mg/kg BW)	-	14 days	↓Neuronal death and production of ROS ↓Locomotor activity ↑serotonin level ↑pentobarbitone induced sleeping time	151
61	<i>Phoenix dactylifera</i> L. (Date palm)	Aceraceae	Fruit	NA	Cinnamic acid, caffeic acid, protocatechuic, gallic acid, dactyliferic acid, and epicatechin	Intracerebroventricularly administration (2% and 4%)	Transgenic mouse model	4 months	Antioxidants properties Helps in enhancing memory ↑Learning and memory impairment ↓astrocyte and microglial activation ↓amyloidogenic APP metabolism by modulating β - secretase	152

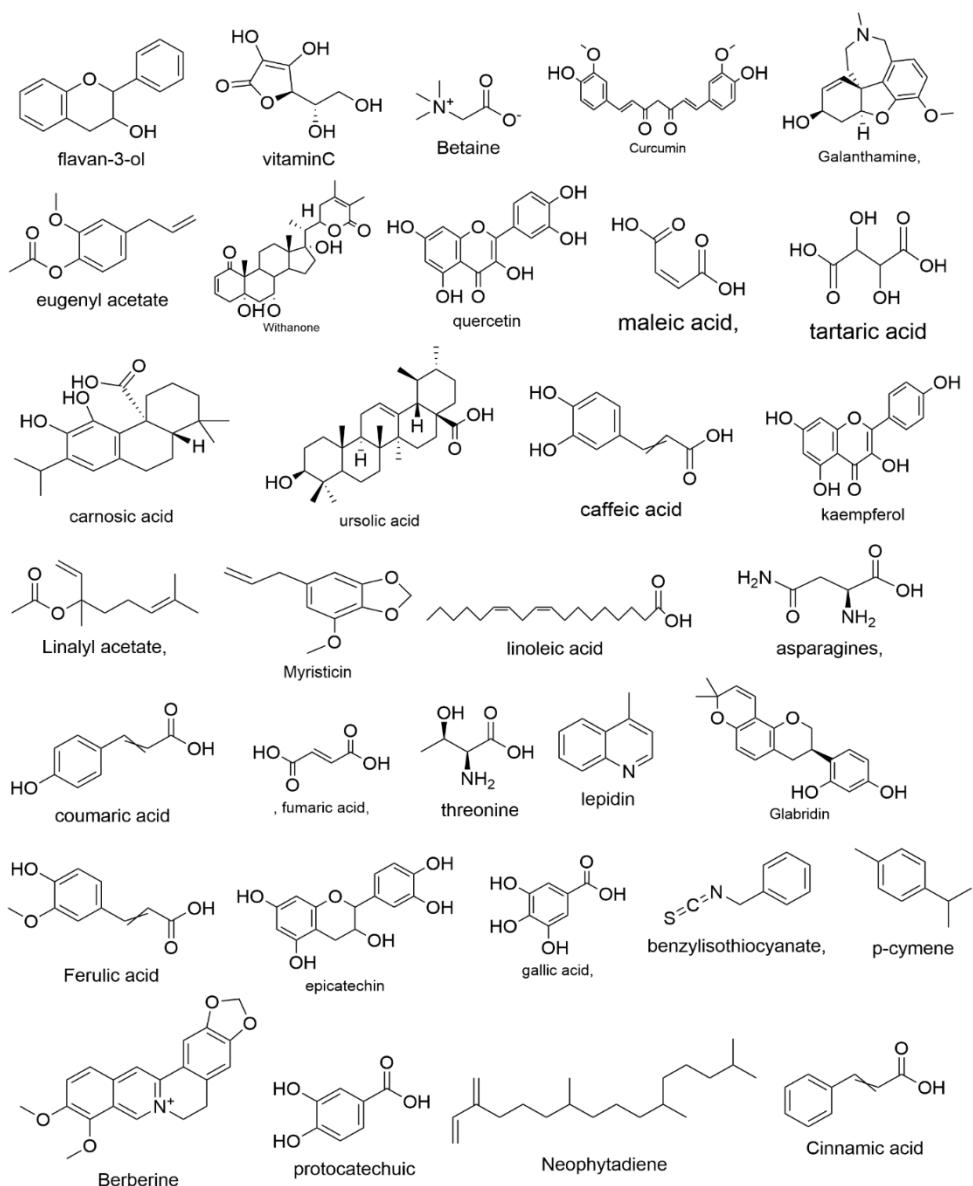
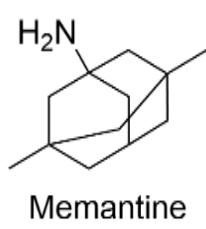
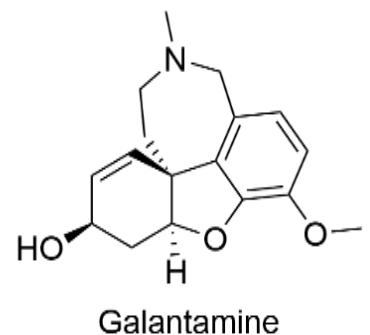
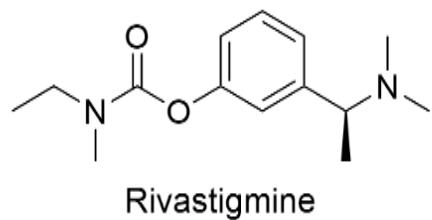
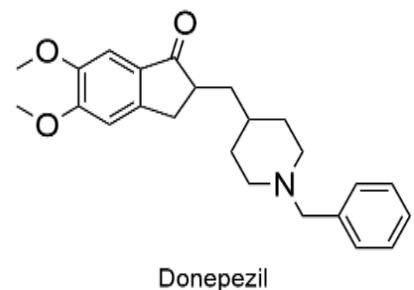
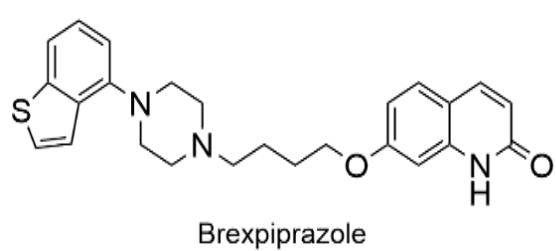


Fig. (4) Example of plant-derived phytochemical for AD






3.2 Chemical based therapy –

In order to slow the course of the behavioral, psychological, and cognitive symptoms of Alzheimer's disease, the current drug treatment approach is sympatholytic rather than curative. The FDA-approved medications shown in Table (2) Figure (5)^{153,154} are administered orally and transdermally and are members of

the NMDA antagonist receptor and anticholinesterase inhibitor (AChEI) families.^{155,156} Memantine is used for moderate to severe Alzheimer's disease, while galantamine, rivastigmine, and donepezil are used for mild to moderate Alzheimer's. NMDA receptor antagonists and cholinesterase inhibitors (cholinesterase inhibitors) are two types of medications used in chemical-based therapy.¹⁵⁷

TABLE- 2 FDA- Approved Drugs that are used in the treatment of AD

S.NO	DRUG	BRAND NAME	CATEGORY	TARGET	STATUS	ADMINISTRATION
1	Brexpiprazole	Rexulti	Atypical antipsychotic	Novel D2dopamine andserotonin1A partial agonist	FDA approved in 2023	Orally administrated
2	Donepezil	Aricept	AChEIs	Reversible acetylcholinesterase inhibition Increase synaptic acetylcholine	FDA approved in 1996	Orally administrated
3	Rivastigmine	Exelon	AChEIs	Inhibits both BChE and AChE	FDA approved in 2000	Administered through Orally or via transdermal patch
4	Galantamine	Razadyne	Parasympathomimetic	Competitive inhibitor of AChE	FDA approved in 2001	Orally administrated
5	Memantine	Namenda	NMDA antagonist	NMDA receptor antagonist	FDA approved in 2013	Orally administrated
6	Tacrine	Cognex	parasympathomimetic	reversible cholinesterase inhibitor	FDA approved in 1993	Orally administration
7	Aducanumab	Aduhelm	Anti-A β Immunotherapies	Targeting A β plaques	FDA approved in 2021	IV administration
8	Lecanemab	Leqembi	Anti-A β Immunotherapies	Targeting A β	FDA approved in 2023	IV administration
9	Semorinemab	-	Tau-targeting therapies	Anti-tau monoclonal antibodies	Phase II/III	IV administration
10	Tideglusib	-	tau-targeting therapies	GSK-3 β inhibitor Decrease Tau hyperphosphorylation	Phase II	IV administration

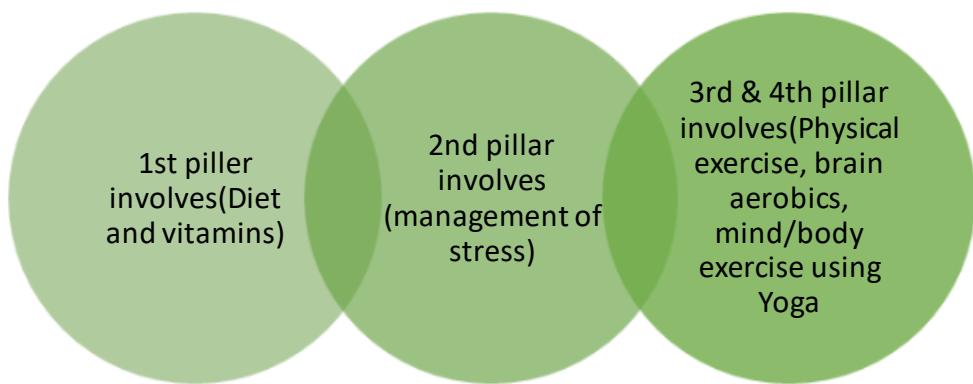
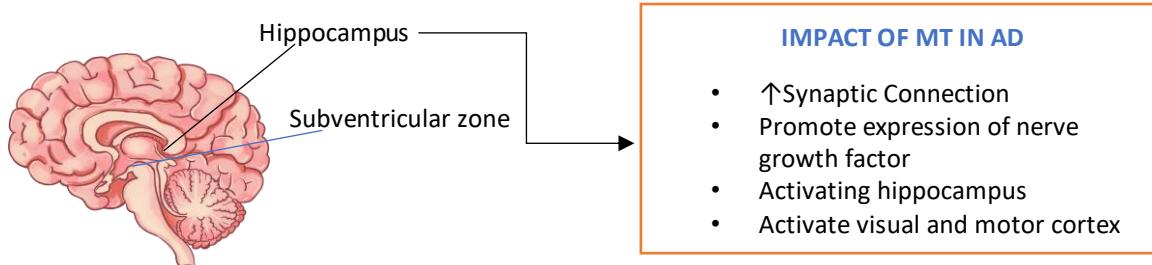


Fig. (5) Structure of FDA approved drugs for the management of AD

3.3 Alternative interventions-

Neurodegenerative diseases can be treated pharmacologically, and non-pharmacological therapies can be used instead of drugs.¹⁵⁶ In addition to adopting

an improved lifestyle, some researchers are keen to involve the use of alternative methods as preventative intercessory measures for AD¹⁵⁸. The Alzheimer Prevention Foundation International (APFI) has guidelines for the prevention of AD, which are presented in Figure (6).


Fig (6). Shown four pillars for prevention of AD

Other alternative approaches may include music therapy, Diet therapy, & physical therapy

3.3.1 Music therapy-

The patient's quality of life and confidence can be greatly enhanced by MT, an exciting nonpharmacological approach for treating Alzheimer's disease¹⁵⁹. These neurogenesis processes caused by music can be beneficial to Alzheimer patients since it enhances mood and mentality state of the disease-affected-people due to the prevention of the anterior hippocampus atrophy build-up and possible restoration of the hippocampus integrity, other possible effect shown in figure (7) ^{160,161} Other patients have found that it enhances AD pathology, agitation and anxiety, depression, aggressive behavior, and episodic memory and decelerates the rate of cognitive deterioration, especially in autobiographical, amyloid depositing, and glucose metabolic terms¹⁶².

Consequently, music is a unique stimulus that effectively engages patients due to its memorizing ability. Therefore, it may be used as a possible strategy to treat Alzheimer's disease symptoms, thereby improving the cognitive state and general well-being of patients¹⁶⁰. The application of MT appears to be safer than Hormonal Replacement Therapy (HRT), and patients are not at risk of adverse side effects. It is important to remember that no unwanted results from the music existed¹⁶³. The ability of MT to enhance sleep levels by acting as a melatonin agonist may benefit sleep without posing a risk of hormone treatment. In addition, MT is easy to administer and is safe, effective, and compliant form of treatment.¹⁶⁴

Fig. (7) shows the mechanism of music therapy in Alzheimer disease

3.3.2 Diet therapy-

Diet, in combination with physiological needs, considerably impacts the nature and composition of the microbial population in the gastrointestinal tract. The incorrect development of intestinal microecologies due to incorrect dietary preferences may activate a chain

reaction of inflammatory processes. The etiology of Alzheimer's disease may be significantly influenced by this imbalance. The presence of a large variety of mechanisms through which dietary interventions may enhance the functionality of the brain, including

regulation of the composition of gut flora¹⁶⁵. Probiotics are the most commonly consumed nutritional supplement. According to a study on the effects of probiotics on cognitive functioning, there are several ways through which probiotics can be used to enhance mental performance. The 12-week intervention targeted people between the ages of 60 and 90 and comprised a regular (usual) diet and incorporation of 200 mL of probiotic milk daily.

The results of the study indicated that probiotic supplementation therapy prevents neuron-neuroexcitation and neuroinflammation, as the supplemented group in the experiments had superior cognitive performance¹⁶⁶. The ketogenic diet, also known as the modified Atkins diet, has low levels of proteins, sugars, and high amounts of fat¹⁶⁷. A low-glycemic diet has proven to be beneficial in Alzheimer's disease treatment because of the high metabolic histopathological issues that predominate before brain development¹⁶⁸. Of the 26 randomly assigned to a randomized, double-blind trials, 21 (81%) successfully completed the entire research process. This is an experiment in which patients with early-stage Alzheimer's disease were questioned about changes in their brain functions after following a ketogenic diet. Although the findings demonstrated a significant increase in cognitive ability in the ketogenic diet group compared to the regular diet group, there was a statistical insignificance in its relation to the variation in the ketogenic diet group's cognitive capacity. In addition, a significant improvement in the quality of life and functional performance was observed in the ketogenic diet group¹⁶⁹. The MIND diet has gained popularity because it can be used to delay the onset of Alzheimer's disease and has neuroprotective effects¹⁷⁰. Dietary Approaches to Control Hypertension (DASH) and Mediterranean diet are incorporated into the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND diet), and compared¹⁷¹ to the improvement of anti-inflammatory and antioxidant potential of the brain based on the pathways of the gut flora and gut-brain axis, the MIND diet includes amino acids such as it also contains micronutrients such as vitamin D and B vitamins that help brain function and are coordinated in reducing the advancement of Alzheimer's disease.¹⁷¹

4. Conclusion-

Alzheimer's disease has a complex pathology, which can be successfully treated with the multimodal treatment package, which involves evidence-based non-pharmacologic alternative modalities, synthetic pharmacologic, and phytoconstituent based methods. Whereas bioactive compounds found in plants and integrative ways of healing provide neuroprotective, anti-inflammatory, and resilient synapses, conventional medicines can influence amyloid and tau pathology. Advanced delivery technology, including nanocarriers and personalized drug conjugates, could increase the

precision and bioavailability of treatment in the brain. Individualized regimens consisting of lifestyle management regimens, multi-target medications, and molecular diagnostics based on the leadership of AI are secrets of the future. The goals of these regimens include the restoration of cognitive integrity and functional independence in patients as well as decreasing neurodegeneration.

Submission Declaration:

This manuscript has not been published previously and is not under consideration for publication elsewhere. The authors confirm that the work is original and have read and approved the final manuscript for submission.

Conflict Of Interest:

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Declaration Of Competing Interest:

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethics Statement:

This review paper, "Holistic and Conventional Approaches in Alzheimer's Therapy: Exploring Herbal, Synthetic, and Alternative Interventions", involves no experimental research, human subjects, or animal studies that need ethical approval; instead, it is based entirely on publicly available literature. For academic openness and integrity, all acknowledged sources were appropriately referenced. I have done all in my power to provide an objective, accurate, and thorough literature review free from any conflicts of interest that could affect how the data are interpreted. The development of this study did not involve any instances of scientific misconduct, data manipulation, or plagiarism. Let me know if you need refinement.

Acknowledgments

The authors would like to thank Chhatrapati Shahu Ji Maharaj University, Kanpur, India, for access to electronic support and Mrs. Amrita Singh for their support and contributions to this work. Special thanks to the research teams and collaborators, whose efforts made this review possible.

Funding: funding was received for conducting this study.

References

1. Sweeney P, Park H, Baumann M, et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. *Transl Neurodegener*. 2017;6(1). doi:10.1186/s40035-017-0077-5

2. Blennow K, De Leon MJ, Zetterberg H. *Alzheimer's Disease*. Vol 368.; 2006. <http://www.alzgene.org>

3. Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer's disease. *Eur J Pharmacol*. 2021;898. doi:10.1016/j.ejphar.2021.173974

4. Braak, H., E. Braak, and J. Bohl. 1993. "Staging of Alzheimer-Related Cortical Destruction." *European Neurology* 33, no. 6: 403–408.

5. De Strooper B, Karan E. The Cellular Phase of Alzheimer's Disease. *Cell*. 2016;164(4):603-615. doi:10.1016/j.cell.2015.12.056

6. Cai W, Wu T, Chen N. The Amyloid-Beta Clearance: From Molecular Targets to Glial and Neural Cells. *Biomolecules*. 2023;13(2). doi:10.3390/biom13020313

7. Pandey SN, Rangra NK, Singh S, Arora S, Gupta V. Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer's Disease. *ACS Chem Neurosci*. 2021;12(15):2718-2728. doi:10.1021/acschemneuro.1c00206

8. Xia X, Jiang Q, McDermott J, Han JDJ. Aging and Alzheimer's disease: Comparison and associations from molecular to system level. *Aging Cell*. 2018;17(5). doi:10.1111/acel.12802

9. 2023 Alzheimer's disease facts and figures. *Alzheimer's and Dementia*. 2023;19(4):1598-1695. doi:10.1002/alz.13016

10. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. *Neurology*. 2013;80(19):1778-1783. doi:10.1212/WNL.0b013e31828726f5

11. Leifer BP. Early diagnosis of Alzheimer's disease: Clinical and economic benefits. *J Am Geriatr Soc*. 2003;51(5 SUPPL. II). doi:10.1046/j.1532-5415.5153.x

12. International D. *World Alzheimer Report 2018 - The State of the Art of Dementia Research: New Frontiers; World Alzheimer Report 2018 - The State of the Art of Dementia Research: New Frontiers*.

13. Agrawal M, Prathyusha E, Ahmed H, et al. Biomaterials in treatment of Alzheimer's disease. *Neurochem Int*. 2021;145. doi:10.1016/j.neuint.2021.105008

14. Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. *Biochem Pharmacol*. 2014;88(4):640-651. doi:10.1016/j.bcp.2013.12.024

15. Campion D, Dumanchin C, Hannequin D, et al. *Early-Onset Autosomal Dominant Alzheimer Disease: Prevalence, Genetic Heterogeneity, and Mutation Spectrum*. Vol 65.; 1999.

16. Otero-Garcia M, Mahajani SU, Wakhloo D, et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease. *Neuron*. 2022;110(18):2929-2948.e8. doi:10.1016/j.neuron.2022.06.021

17. Dregni AJ, Duan P, Xu H, et al. Fluent molecular mixing of Tau isoforms in Alzheimer's disease neurofibrillary tangles. *Nat Commun*. 2022;13(1). doi:10.1038/s41467-022-30585-0

18. Braskie MN, Klunder AD, Hayashi KM, et al. Plaque and tangle imaging and cognition in normal aging and Alzheimer's disease. *Neurobiol Aging*. 2010;31(10):1669-1678. doi:10.1016/j.neurobiolaging.2008.09.012

19. Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia. *Nature*. 2024;628(8006):154-161. doi:10.1038/s41586-024-07185-7

20. da Rosa MM, de Amorim LC, Alves JV de O, et al. The promising role of natural products in Alzheimer's disease. *Brain Disord*. 2022;7. doi:10.1016/j.dscb.2022.100049

21. Fink HA, Linskens EJ, MacDonald R, et al. Benefits and harms of prescription drugs and supplements for treatment of clinical Alzheimer-type dementia: A systematic review and meta-analysis. *Ann Intern Med*. 2020;172(10):656-668. doi:10.7326/M19-3887

22. You JS, Li CY, Chen W, et al. A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao. *BioData Min*. 2020;13(1). doi:10.1186/s13040-020-00212-z

23. Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer's disease treatment: The share of herbal medicines. *Iran J Basic Med Sci*. 2021;24(2):123-135. doi:10.22038/IJBM.2020.50536.11512

24. MA Y, LIU S, ZHOU Q, LI Z, ZHANG Z, YU B. Approved drugs and natural products at clinical stages for treating Alzheimer's disease. *Chin J Nat Med*. 2024;22(8):699-710. doi:10.1016/S1875-5364(24)60606-0

25. Huang LK, Kuan YC, Lin HW, Hu CJ. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update. *J Biomed Sci*. 2023;30(1). doi:10.1186/s12929-023-00976-6

26. Conti Filho CE, Loss LB, Marcolongo-Pereira C, et al. Advances in Alzheimer's disease's pharmacological treatment. *Front Pharmacol*. 2023;14. doi:10.3389/fphar.2023.1101452

27. Yadav A, Jangra M, Kr P. Herbal and synthetic approaches for the treatment of epilepsy. *Int J Nutr Pharmacol Neurol Dis*. 2014;4(1):43. doi:10.4103/2231-0738.124613

28. Sunali Lalotra, J S Vaghela. Scientific Reports of Medicinal Plants Used for the Prevention and Treatment of Neurodegenerative diseases. *Pharmaceutical and Biosciences Journal*. Published online January 19, 2019:15-25. doi:10.20510/ukjpb/7/i1/179297

29. Dubey T, Chinnathambi S. Brahmi (*Bacopa monnieri*): An ayurvedic herb against the Alzheimer's disease. *Arch Biochem Biophys*. 2019;676. doi:10.1016/j.abb.2019.108153

30. Baranowska-Wójcik E, Szwajgier D. Alzheimer's disease: review of current nanotechnological therapeutic strategies. *Expert Rev Neurother*. 2020;20(3):271-279. doi:10.1080/14737175.2020.1719069

31. Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. *Curr Neuropharmacol*. 2020;18(11):1106-1125. doi:10.2174/1570159x18666200528142429

32. Datta S, Patil S. Evaluation of traditional herb extract *salvia officinalis* in treatment of Alzheimer's disease. *Pharmacognosy Journal*. 2020;12(1):131-143. doi:10.5530/pj.2020.12.20

33. Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β -amyloid in Alzheimer's disease. *Pathol Int*. 2017;67(4):185-193. doi:10.1111/pin.12520

34. Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid- β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. *Aging Dis*. 2025;16(2):658-682. doi:10.14336/AD.2024.0286

35. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: Pathogenesis, diagnostics, and therapeutics. *Int J Nanomedicine*. 2019;14:5541-5554. doi:10.2147/IJN.S200490

36. Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. *Neuromolecular Med*. 2010;12(1):1-12. doi:10.1007/s12017-009-8104-z

37. Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting Amyloidogenic Processing of APP in Alzheimer's Disease. *Front Mol Neurosci*. 2020;13. doi:10.3389/fnmol.2020.00137

38. Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer's disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. *Neural Regen Res*. 2016;11(10):1579-1581. doi:10.4103/1673-5374.193234

39. Zhang H, Wei W, Zhao M, et al. Review interaction between $\alpha\beta$ and tau in the pathogenesis of alzheimer's disease. *Int J Biol Sci*. 2021;17(9):2181-2192. doi:10.7150/ijbs.57078

40. Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. *Front Mol Neurosci*. 2022;15. doi:10.3389/fnmol.2022.937133

41. Bhatia V, Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. *J Neurol Sci*. 2021;421. doi:10.1016/j.jns.2020.117253

42. Nampoothiri M, Kumar N, Ramalingayya GV, Kutty NG, Krishnadas N, Rao CM. Effect of insulin on spatial memory in aluminum chloride-induced dementia in rats. *Neuroreport*. 2017;28(9):540-544. doi:10.1097/WNR.0000000000000799

43. Thawabteh AM, Ghanem AW, AbuMadi S, et al. Promising Natural Remedies for Alzheimer's Disease Therapy. *Molecules*. 2025;30(4). doi:10.3390/molecules30040922

44. Cheng Y, Tian DY, Wang YJ. Peripheral clearance of brain-derived $\text{A}\beta$ in Alzheimer's disease: Pathophysiology and therapeutic perspectives. *Transl Neurodegener*. 2020;9(1). doi:10.1186/s40035-020-00195-1

45. Kelliny S, Zhou XF, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. *J Neurosci Res*. 2025;103(5). doi:10.1002/jnr.70046

46. Soldano A, Hassan BA. Beyond pathology: APP, brain development and Alzheimer's disease. *Curr Opin Neurobiol*. 2014;27:61-67. doi:10.1016/j.conb.2014.02.003

47. Lanoiselée HM, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. *PLoS Med*. 2017;14(3). doi:10.1371/journal.pmed.1002270

48. Cai Y, An SSA, Kim S. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. *Clin Interv Aging*. 2015;10:1163-1172. doi:10.2147/CIA.S85808

49. Querfurth HW, LaFerla FM. Alzheimer's Disease. *New England Journal of Medicine*. 2010;362(4):329-344. doi:10.1056/NEJMra0909142

50. Lue LF, Kuo YM, Roher AE, et al. *Soluble Amyloid Peptide Concentration as a Predictor of Synaptic Change in Alzheimer's Disease*. Vol 155.; 1999.

51. Han XJ, Hu YY, Yang ZJ, et al. Amyloid β -42 induces neuronal apoptosis by targeting mitochondria. *Mol Med*

Rep. 2017;16(4):4521-4528.
doi:10.3892/mmr.2017.7203

52. Morley JE, Farr SA, Nguyen AD, Xu F. What is the Physiological Function of Amyloid-Beta Protein? *Journal of Nutrition, Health and Aging.* 2019;23(3):225-226. doi:10.1007/s12603-019-1162-5

53. Selkoe DJ. *Alzheimer's Disease: Genes, Proteins, and Therapy.*; 2001. <http://physrev.physiology.org>

54. Lewis J, Dickson DW. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. *Acta Neuropathol.* 2016;131(1):27-48. doi:10.1007/s00401-015-1507-z

55. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. *Cold Spring Harb Perspect Med.* 2011;1(1). doi:10.1101/cshperspect.a006189

56. Anastasiou E, Lorentz KO, Stein GJ, Mitchell PD. Prehistoric schistosomiasis parasite found in the Middle East. *Lancet Infect Dis.* 2014;14(7):553-554. doi:10.1016/S1473-3099(14)70794-7

57. Sharma VM, Litersky JM, Bhaskar K, Lee G. Tau impacts on growth-factor-stimulated actin remodeling. *J Cell Sci.* 2007;120(5):748-757. doi:10.1242/jcs.03378

58. Ahmad A, Turab Naqvi GMH and MdIH. Targeting Tau Hyperphosphorylation via Kinase Inhibition: Strategy to Address Alzheimer's Disease. *Curr Top Med Chem.* 2020;20(12):1059-1073. doi:<https://doi.org/10.2174/1568026620666200106125910>

59. Dixit H, Selvaa Kumar C, Chaudhary R, Thaker D, Gadewal N, Dasgupta D. Role of phosphorylation and hyperphosphorylation of tau in its interaction with $\beta\alpha$ dimeric tubulin studied from a bioinformatics perspective. *Avicenna J Med Biotechnol.* 2020;13(1):24-34. doi:10.18502/ajmb.v13i1.4579

60. Wang JZ, Xia YY, Grundke-Iqbali I, Iqbal K. Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. *Journal of Alzheimer's Disease.* 2013;33(SUPPL. 1). doi:10.3233/JAD-2012-129031

61. Ju Y, Tam K. Pathological mechanisms and therapeutic strategies for Alzheimer's disease. *Neural Regen Res.* 2022;17(3):543-549. doi:10.4103/1673-5374.320970

62. Hoover BR, Reed MN, Su J, et al. Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. *Neuron.* 2010;68(6):1067-1081. doi:10.1016/j.neuron.2010.11.030

63. Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. *Transl Neurodegener.* 2024;13(1). doi:10.1186/s40035-024-00429-6

64. Su J, Xiao Y, Wang X, Zheng J, Wang JZ. Development of tau phosphorylation-targeting therapies for the treatment of neurodegenerative diseases. *Medicine Plus.* 2024;1(4):100060. doi:10.1016/j.medp.2024.100060

65. Luca M, Mauro M Di, Mauro M Di, Luca A. Gut microbiota in Alzheimer's disease, depression, and type 2 diabetes mellitus: The role of oxidative stress. *Oxid Med Cell Longev.* 2019;2019. doi:10.1155/2019/4730539

66. Picca A, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. *Antioxidants.* 2020;9(8):1-21. doi:10.3390/antiox9080647

67. Atamna H, Boyle K. *Amyloid-Peptide Binds with Heme to Form a Peroxidase: Relationship to the Cytopathologies of Alzheimer's Disease.*; 2006. www.pnas.org/cgi/doi/10.1073/pnas.0600134103

68. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. *Journal of Neuroscience.* 2006;26(35):9057-9068. doi:10.1523/JNEUROSCI.1469-06.2006

69. McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. *Neurotherapeutics.* 2025;22(3). doi:10.1016/j.neurot.2025.e00525

70. Dumont M, Stack C, Elipenahli C, et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. *The FASEB Journal.* 2011;25(11):4063-4072. doi:10.1096/fj.11-186650

71. Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D, Campos-Peña V. Oxidative stress and metabolic syndrome: Cause or consequence of Alzheimer's disease? *Oxid Med Cell Longev.* 2014;2014. doi:10.1155/2014/497802

72. Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. *Oxid Med Cell Longev.* Published online 2013. doi:10.1155/2013/316523

73. Cenini G, Voos W. Mitochondria as potential targets in Alzheimer disease therapy: An update. *Front*

Pharmacol. 2019;10(JULY).
doi:10.3389/fphar.2019.00902

74. Durg S, Dhadde SB, Vandal R, Shivakumar BS, Charan CS. *Withania somnifera* (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. *Journal of Pharmacy and Pharmacology.* 2015;67(7):879-899. doi:10.1111/jphp.12398

75. Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, et al. Therapeutic Approach to Alzheimer's Disease: Current Treatments and New Perspectives. *Pharmaceutics.* 2022;14(6). doi:10.3390/pharmaceutics14061117

76. Wu J guo, Wang Y yan, Zhang Z lv, Yu B. Herbal medicine in the treatment of Alzheimer's disease. *Chin J Integr Med.* 2015;21(2):102-107. doi:10.1007/s11655-014-1337-y

77. Soheili M. *The Effect of Essential Oil of Lavandula Angustifolia on Amyloid Beta Polymerization: An In Vitro Study.* Vol 37.; 2018.

78. Oseni OA, Okoh OS, Kayode AAA. Acetylcholinesterase inhibition and antioxidant potentials of some nigerian medicinal plants for the treatment of alzheimer disease and other related complications. *Tropical Journal of Natural Product Research.* 2020;4(8):417-434. doi:10.26538/tjnpr/v4i8.17

79. Wang Y, Wang K, Yan J, Zhou Q, Wang X. Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. *Int J Mol Sci.* 2022;23(22). doi:10.3390/ijms232213886

80. Jeremic D, Navarro-López JD, Jiménez-Díaz L. Efficacy and safety of anti-amyloid- β monoclonal antibodies in current Alzheimer's disease phase III clinical trials: A systematic review and interactive web app-based meta-analysis. *Ageing Res Rev.* 2023;90. doi:10.1016/j.arr.2023.102012

81. Muralidhar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: The prime pathological player. *Int J Biol Macromol.* 2020;163:1599-1617. doi:10.1016/j.ijbiomac.2020.07.327

82. Breijeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. *Molecules.* 2020;25(24). doi:10.3390/MOLECULES25245789

83. Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. *Eur J Med Chem.* 2021;216. doi:10.1016/j.ejmech.2021.113320

84. Chakraborty B, Mukerjee N, Maitra S, et al. Therapeutic Potential of Different Natural Products for the Treatment of Alzheimer's Disease. *Oxid Med Cell Longev.* 2022;2022. doi:10.1155/2022/6873874

85. Jamshidi AH, Eghbalian F, Mahroozade S, Kenari HM, Ghobadi A, Yousefsani BS. Recommended natural products in Alzheimer's disease based on traditional Persian medicine. *Journal of Medicinal Plants.* 2020;19(75):17-29. doi:10.29252/jmp.19.75.17

86. Zahiruddin S, Basist P, Parveen A, et al. Ashwagandha in brain disorders: A review of recent developments. *J Ethnopharmacol.* 2020;257. doi:10.1016/j.jep.2020.112876

87. Sharma R, Kuca K, Nepovimova E, Kabra A, Rao MM, Prajapati PK. Traditional Ayurvedic and herbal remedies for Alzheimer's disease: from bench to bedside. *Expert Rev Neurother.* 2019;19(5):359-374. doi:10.1080/14737175.2019.1596803

88. Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3 β inhibitors in Alzheimer's disease treatment. *CNS Neurosci Ther.* 2024;30(8). doi:10.1111/cns.14885

89. Orrù A, Casu MA, Tambaro S, Marchese G, Casu G, Ruiu S. *Withania somnifera* (L.) Dunal root extract alleviates formalin-induced nociception in mice: Involvement of the opioidergic system. *Behavioural Pharmacology.* 2016;27(1):57-68. doi:10.1097/FBP.0000000000000195

90. Awasthi H, Tota S, Hanif K, Nath C, Shukla R. Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. *Life Sci.* 2010;86(3-4):87-94. doi:10.1016/j.lfs.2009.11.007

91. Douglas Shytle R, Bickford PC, Rezai-Zadeh K, et al. *Optimized Turmeric Extracts Have Potent Anti-Amyloidogenic Effects.* Vol 6.; 2009.

92. Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. *Rejuvenation Res.* 2013;16(4):313-326. doi:10.1089/rej.2013.1431

93. Agarwal P, Sharma B, Fatima A, Jain SK. An update on Ayurvedic herb *Convolvulus pluricaulis* Choisy. *Asian Pac J Trop Biomed.* 2014;4(3):245-252. doi:10.1016/S2221-1691(14)60240-9

94. Gray NE, Harris CJ, Quinn JF, Soumyanath A. *Centella asiatica* modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. *J Ethnopharmacol.* 2016;180:78-86. doi:10.1016/j.jep.2016.01.013

95. Bhanumathy M, Harish MS, Shivaprasad HN, Sushma G. Nootropic activity of *Celastrus paniculatus* seed. *Pharm Biol.* 2010;48(3):324-327. doi:10.3109/13880200903127391

96. Muthiah A, Rahman H. *Inhibition of AChE and Antioxidant Activities Are Probable Mechanism of Nardostachys Jatamansi DC in Sleep Deprived Alzheimer's Mice Model.* Vol 3.; 2011. <https://www.researchgate.net/publication/216302152>

97. Heinrich M, Teoh HL. Galanthamine from snowdrop - The development of a modern drug against Alzheimer's disease from local Caucasian knowledge. *J Ethnopharmacol.* 2004;92(2-3):147-162. doi:10.1016/j.jep.2004.02.012

98. Shekhar S, Yadav Y, Singh AP, et al. Neuroprotection by ethanolic extract of *Syzygium aromaticum* in Alzheimer's disease like pathology via maintaining oxidative balance through SIRT1 pathway. *Exp Gerontol.* 2018;110:277-283. doi:10.1016/j.exger.2018.06.026

99. Cui YM, Ao MZ, Li W, Yu LJ. Effect of glabridin from *Glycyrrhiza glabra* on learning and memory in mice. *Planta Med.* 2008;74(4):377-380. doi:10.1055/s-2008-1034319

100. Kaur H, Singh D, Singh B, Goel RK. Anti-amnesic effect of *Ficus religiosa* in scopolamine-induced anterograde and retrograde amnesia. *Pharm Biol.* 2010;48(2):234-240. doi:10.3109/13880200903271306

101. Lee YJ, Choi DY, Han SB, et al. Inhibitory effect of ethanol extract of magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer's disease via regulating β -secretase activity. *Phytotherapy Research.* 2012;26(12):1884-1892. doi:10.1002/ptr.4643

102. Rubio J, Dang H, Gong M, Liu X, Chen S lin, Gonzales GF. Aqueous and hydroalcoholic extracts of Black Maca (*Lepidium meyenii*) improve scopolamine-induced memory impairment in mice. *Food and Chemical Toxicology.* 2007;45(10):1882-1890. doi:10.1016/j.fct.2007.04.002

103. Golechha M, Bhatia J, Singh Arya D. Studies on effects of *Emblica officinalis* (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice Author Details. *J Environ Biol.* 2012;33:95-100. www.jeb.co.in

104. Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MNS. Neuroprotective effect of *Tinospora cordifolia* ethanol extract on 6-hydroxy dopamine induced Parkinsonism. *Indian J Pharmacol.* 2014;46(2):176-180. doi:10.4103/0253-7613.129312

105. Khalili M, Hamzeh F. *Effects of Active Constituents of Crocus Sativus L., Crocin on Streptozocin-Induced Model of Sporadic Alzheimer's Disease in Male Rats.* Vol 14.; 2010. <http://IBJ.pasteur.ac.ir>

106. Kim JE, Shrestha AC, Kim HS, et al. WS-5 Extract of *Curcuma longa*, *Chaenomeles sinensis*, and *Zingiber officinale* Contains Anti-AChE Compounds and Improves β -Amyloid-Induced Memory Impairment in Mice. *Evidence-based Complementary and Alternative Medicine.* 2019;2019. doi:10.1155/2019/5160293

107. Jang SK, Ahn JW, Jo B, et al. Double-processed ginseng berry extracts enhance learning and memory in an A β 42-induced Alzheimer's mouse model. *Korean Journal of Food Science and Technology.* 2019;51(2):160-168. doi:10.9721/KJFST.2019.51.2.160

108. *Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods.*

109. Siripurapu KB, Gupta P, Bhatia G, Maurya R, Nath C, Palit G. Adaptogenic and anti-amnesic properties of *Evolvulus alsinoides* in rodents. *Pharmacol Biochem Behav.* 2005;81(3):424-432. doi:10.1016/j.pbb.2005.03.003

110. Beheshti S, Shahmoradi B. Therapeutic effect of *Melissa officinalis* in an amyloid- β rat model of Alzheimer's disease. *Journal of HerbMed Pharmacology.* 2018;7(3):193-199. doi:10.15171/jhp.2018.31

111. Rodrigues MRA, Kanazawa LKS, Neves TLMH Das, et al. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of *Salvia officinalis* in mice. *J Ethnopharmacol.* 2012;139(2):519-526. doi:10.1016/j.jep.2011.11.042

112. Ahmed F, Narendra Sharath Chandra JN, Manjunath S. Acetylcholine and memory-enhancing activity of *Ficus racemosa* bark. *Pharmacognosy Res.* 2011;3(4):246-249. doi:10.4103/0974-8490.89744

113. Zhou J, Yang WS, Suo DQ, et al. *Moringa oleifera* seed extract alleviates scopolamine-induced learning and memory impairment in mice. *Front Pharmacol.* 2018;9(APR). doi:10.3389/fphar.2018.00389

114. Kulkarni KS, Kasture SB, Mengi SA. Efficacy study of *Prunus amygdalus* (almond) nuts in scopolamine-induced amnesia in rats. *Indian J Pharmacol.* 2010;42(3):168-173. doi:10.4103/0253-7613.66841

115. Parle M, Dhingra D, Kulkarni SK. *Improvement of Mouse Memory by Myristica Fragrans Seeds.* Vol 7.; 2004.

116. Esfandiary E, Karimipour M, Mardani M, et al. Neuroprotective effects of *Rosa damascena* extract on learning and memory in a rat model of amyloid- β -induced Alzheimer's disease. *Adv Biomed Res.* 2015;4(1):131. doi:10.4103/2277-9175.161512

117. Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, Mohammadnejad D, Esmaeili A (2015) Neuroprotective effects of *Rosa damascena* extract on learning and memory in a rat model of amyloid-beta-induced 1225 Alzheimer's disease. *Adv Biomed Res* 4, 131.

118. Soheili M. *The Effect of Essential Oil of Lavandula Angustifolia on Amyloid Beta Polymerization: An In Vitro Study.* Vol 37.; 2018.

119. Kashani MS, Tavirani MR, Talaei SA, Salami M. Aqueous extract of lavender (*Lavandula angustifolia*) improves the spatial performance of a rat model of Alzheimer's disease. *Neurosci Bull.* 2011;27(2):99-106. doi:10.1007/s12264-011-1149-7

120. Tembhurne SV, Sakarkar DM. *Beneficial Effects of Ethanolic Extract of Murraya Koenigii (Linn) Leaves in Cognitive Deficit Aged Mice Involving Possible Anticholinesterase and Cholesterol Lowering Mechanism.* Vol 2.

121. Sohn E, Kim YJ, Kim JH, Jeong SJ. *Ficus erecta Thunb Leaves Alleviate Memory Loss Induced by Scopolamine in Mice via Regulation of Oxidative Stress and Cholinergic System.* Published online 2035. doi:10.1007/s12035-021-02358-1/Published

122. Mani V, Parle M, Ramasamy K, Abdul Majeed AB. Reversal of memory deficits by *Coriandrum sativum* leaves in mice. *J Sci Food Agric.* 2011;91(1):186-192. doi:10.1002/jsfa.4171

123. Kulkarni PD, Ghaisas MM, Chivate ND, Sankpal PS. *MEMORY ENHANCING ACTIVITY OF CISSAMPELOS PARIERA IN MICE.*

124. Tang H, Wang J, Zhao L, Zhao XM. *Rhodiola rosea l* extract shows protective activity against Alzheimer's disease in 3xTg-AD mice. *Tropical Journal of Pharmaceutical Research.* 2017;16(3):509-514. doi:10.4314/tjpr.v16i3.3

125. K. Ravishankar MP. Study of protective effect of ethanolic root extract of *Clitoria ternatea* against stress induced amnesia. *Journal of Pharmacy Research.* 2012;5:2763-2766. Accessed August 15, 2025. <http://jpronline.info/index.php/jpr/article/view/13344/6774>

126. Taranalli AD, Cheeramkuzhy TC. Influence of *Clitoria ternatea* extracts on memory and central cholinergic activity in rats. *Pharm Biol.* 2000;38(1):51-56. doi:10.1076/1388-0209(200001)3811-BFT051

127. Semwal BC, Verma M, Murti Y, Yadav HN. Neuroprotective activity of *sesbania grandifolara* seeds extract against celecoxib induced amnesia in mice. *Pharmacognosy Journal.* 2018;10(4):747-752. doi:10.5530/pj.2018.4.125

128. Saeedi M, Babaie K, Karimpour-Razkenari E, et al. In vitro cholinesterase inhibitory activity of some plants used in Iranian traditional medicine. *Nat Prod Res.* 2017;31(22):2690-2694. doi:10.1080/14786419.2017.1290620

129. Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah A. The effects of *Acorus calamus L.* in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. *Int J Prev Med.* 2018;9(1). doi:10.4103/ijpvm.IJPVM_75_18

130. Vasudevan M, Parle M. Pharmacological actions of *Thespesia populnea* relevant to Alzheimer's disease. *Phytomedicine.* 2006;13(9-10):677-687. doi:10.1016/j.phymed.2006.01.007

131. Subramanian P, Natesan V, Subramanian P. Neuroprotective Effect of *Semecarpus Anacardium* Against Hyperammonemia in Rats. *J Pharm Res.* 2010;3(7):1564-1568. http://icmr.nic.in/bioethics/final_CPCSEA.pdf <http://icmr.nic.in/bioeth->

132. *Neuroprotective Effects of A. Racemosus Root Extract in Ovariectomized Rats.*

133. Khurana N, Sharma N, Patil S, Gajbhiye A. Phyto-pharmacological properties of *sida cordifolia*: A review of folklore use and pharmacological activities. *Asian Journal of Pharmaceutical and Clinical Research.* 2016;9:52-58. doi:10.22159/ajpcr.2016.v9s2.13698

134. Venuprasad MP, Hemanth Kumar K, Khanum F. Neuroprotective effects of hydroalcoholic extract of *ocimum sanctum* against H2O2 induced neuronal cell damage in SH-SY5Y cells via its antioxidative defence mechanism. *Neurochem Res.* 2013;38(10):2190-2200. doi:10.1007/s11064-013-1128-7

135. Jawaid T, Shakya AK, Siddiqui HH, Kamal M. Evaluation of *Cucurbita maxima* extract against scopolamine-induced amnesia in rats: Implication of Tumour necrosis factor alpha. *Zeitschrift fur Naturforschung - Section C Journal of Biosciences.* 2014;69(9-10):407-417. doi:10.5560/ZNC.2014-0003

136. Muthaiyah B, Essa MM, Chauhan V, Chauhan A. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. *Neurochem Res.* 2011;36(11):2096-2103. doi:10.1007/s11064-011-0533-z

137. S. N. Rao MNPSSRR. The effects of ethanolic extract in dried fruits of *Terminalia chebula* on learning and memory in mice. *Asian Journal of Biomedical and Pharmaceutical Sciences.* 2013;3:59-62.

138. Nageswara Rao S, Palaksha MN, Satish S, Ravishankar. The effects of ethanolic extract in dried Fruits of *Terminalia chebula* on learning and memory in mice. *Asian J Biomed Pharm Sci* 2013;3(20):59-62.

139. Koppula S, Choi DK. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: A

noninvasive biochemical approach. *Pharm Biol.* 2011;49(7):702-708. doi:10.3109/13880209.2010.541923

140. Salari E, Shamsizadeh A, Allahtavakoli M, Taghavi Y, Ravari A, Msc 1. *PhD Student, Dept. of Physiology- Pharmacology.* Vol 3.; 2014. www.SID.ir

141. Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: Prevention by extracts of *Withania somnifera* and *Aloe vera*. *Journal of Clinical Neuroscience.* 2004;11(4):397-402. doi:10.1016/j.jocn.2003.09.008

142. Wahby MM, Mohammed DS, Newairy AA, Abdou HM, Zaky A. Aluminum-induced molecular neurodegeneration: The protective role of genistein and chickpea extract. *Food and Chemical Toxicology.* 2017;107:57-67. doi:10.1016/j.fct.2017.05.044

143. da Silva AL, Pinto ÂL, Ferreira JG, Martins BS, Nunes DS, Elisabetsky E. Promnesic effects of *Ptychopetalum olacoides* in aversive and non-aversive learning paradigms. *J Ethnopharmacol.* 2007;109(3):449-457. doi:10.1016/j.jep.2006.08.022

144. Heo H, Shin Y, Cho W, Choi YS, Kim H, Kwon YK. Memory improvement in ibotenic acid induced model rats by extracts of *Scutellaria baicalensis*. *J Ethnopharmacol.* 2009;122(1):20-27. doi:10.1016/j.jep.2008.11.026

145. Rabiei Z, Mokhtari S, Asgharzade S, Gholami M, Rahnama S, Rafieian-kopaei M. Inhibitory effect of *Thymus vulgaris* extract on memory impairment induced by scopolamine in rat. *Asian Pac J Trop Biomed.* 2015;5(10):845-851. doi:10.1016/j.apjtb.2015.07.006

146. Clewell AE, Béres E, Vértesi A, et al. A Comprehensive Toxicological Safety Assessment of an Extract of *Olea Europaea* L. Leaves (BonoliveTM). *Int J Toxicol.* 2016;35(2):208-221. doi:10.1177/1091581815619764

147. Jeong JH, Jeong HR, Jo YN, Kim HJ, Shin JH, Heo HJ. Ameliorating effects of aged garlic extracts against A β -induced neurotoxicity and cognitive impairment. *BMC Complement Altern Med.* 2013;13. doi:10.1186/1472-6882-13-268

148. Al-Tawarah NM, Al-dmour RH, Abu Hajleh MN, et al. Rosmarinus officinalis and *Mentha piperita* Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer's Disease-like Condition. *Nutrients.* 2023;15(6). doi:10.3390/nu15061547

149. Durairajan SSK, Liu LF, Lu JH, et al. Berberine ameliorates β -amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. *Neurobiol Aging.* 2012;33(12):2903-2919. doi:10.1016/j.neurobiolaging.2012.02.016

150. Joshi H, Parle M. *Cholinergic Basis of Memory-Strengthening Effect of *Foeniculum Vulgare* Linn.* Vol 9.; 2006.

151. Jiraungkoorskul W. Review of neuro-nutrition used as anti-Alzheimer plant, spinach *Spinacia oleracea*. *Pharmacogn Rev.* 2016;10(20):105-108. doi:10.4103/0973-7847.194040

152. Subash S, Essa MM, Braidy N, et al. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer's disease. *J Ayurveda Integr Med.* 2015;6(2):111-120. doi:10.4103/0975-9476.159073

153. Puranik N, Song M. Therapeutic Role of Heterocyclic Compounds in Neurodegenerative Diseases: Insights from Alzheimer's and Parkinson's Diseases. *Neurol Int.* 2025;17(2). doi:10.3390/neurolint17020026

154. Zhang J, Kong G, Yang J, Pang L, Li X. Pathological mechanisms and treatment progression of Alzheimer's disease. *Eur J Med Res.* 2025;30(1). doi:10.1186/s40001-025-02886-9

155. Briggs R, Kennelly SP, O'neill D. *DRUG THERAPIES IN....* Vol 16.; 2016.

156. Atri A. Current and Future Treatments in Alzheimer's Disease. *Semin Neurol.* 2019;39(2):227-240. doi:10.1055/s-0039-1678581

157. Morrison AS, Lyketsos C. *THE PATHOPHYSIOLOGY OF ALZHEIMER'S DISEASE AND DIRECTIONS IN TREATMENT.* Vol 3.; 2005. <http://www.alzheimers.org/unraveling/04.htm>

158. Kelley BJ, Knopman DS. Alternative medicine and Alzheimer disease. *Neurologist.* 2008;14(5):299-306. doi:10.1097/NRL.0b013e318172cf4d

159. Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer's disease: An international Delphi consensus. *Int Psychogeriatr.* 2019;31(1):83-90. doi:10.1017/S1041610218000534

160. Koelsch S, Jacobs AM, Menninghaus W, et al. The quartet theory of human emotions: An integrative and neurofunctional model. *Phys Life Rev.* 2015;13:1-27. doi:10.1016/j.plrev.2015.03.001

161. Strange BA, Witter MP, Lein ES, Moser EI. *Functional Organisation of the Hippocampal Longitudinal Axis.*

162. Wang J, Liu C, Dai Y, et al. Efficacy of music therapy as a non-pharmacological measure to support Alzheimer's disease patients: a systematic review. *BMC Geriatr.* 2025;25(1). doi:10.1186/s12877-025-06073-7

163. Brust JCM. *Music and the Neurologist A Historical Perspective*.

164. A M Kumar FTDGCMJMGIDLRCJBCEMK. Music therapy increases serum melatonin levels in patients with Alzheimer's disease. *PubMed*. 1999;6:49-57.

165. Jinyan Huang. Review: New strategies for early dietary intervention in Alzheimer's disease. *ScienceDirect* . 2025;39(1):15-21.

166. Krüger JF, Hillesheim E, Pereira ACSN, Camargo CQ, Rabito EI. Probiotics for dementia: A systematic review and meta-analysis of randomized controlled trials. *Nutr Rev*. 2021;79(2):160-170. doi:10.1093/nutrit/nuaa037

167. Shin IH, Song H. Effects of a Dementia Special Care Unit on the Changes in Physical Function, Cognitive Function, and Problematic Behaviors among Nursing Home Residents. *Ann Geriatr Med Res*. 2023;27(1):50-57. doi:10.4235/agmr.22.0149

168. Rong L, Peng Y, Shen Q, Chen K, Fang B, Li W. Effects of ketogenic diet on cognitive function of patients with Alzheimer's disease: a systematic review and meta-analysis. *Journal of Nutrition, Health and Aging*. 2024;28(8). doi:10.1016/j.jnha.2024.100306

169. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: A randomized, double-blind, placebo-controlled, multicenter trial. *Nutr Metab (Lond)*. 2009;6. doi:10.1186/1743-7075-6-31

170. Mateo D, Carrión N, Cabrera C, et al. Gut Microbiota Alterations in Alzheimer's Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle. *Microorganisms*. 2024;12(10). doi:10.3390/microorganisms12102046

171. Barnes LL, Dhana K, Liu X, et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. *New England Journal of Medicine*. 2023;389(7):602-611. doi:10.1056/nejmoa2302368